Isospectral flows on a class of finite-dimensional Jacobi matrices

نویسندگان

  • Tobias Sutter
  • Debasish Chatterjee
  • Federico Ramponi
  • John Lygeros
چکیده

We present a new matrix-valued isospectral ordinary differential equation that asymptotically block-diagonalizes n × n zero-diagonal Jacobi matrices employed as its initial condition. This o.d.e. features a right-hand side with a nested commutator of matrices, and structurally resembles the double-bracket o.d.e. studied by R.W. Brockett in 1991. We prove that its solutions converge asymptotically, that the limit is block-diagonal, and above all, that the limit matrix is defined uniquely as follows: For n even, a blockdiagonal matrix containing 2 × 2 blocks, such that the super-diagonal entries are sorted by strictly increasing absolute value. Furthermore, the off-diagonal entries in these 2 × 2 blocks have the same sign as the respective entries in the matrix employed as initial condition. For n odd, there is one additional 1 × 1 block containing a zero that is the top left entry of the limit matrix. The results presented here extend some early work of Kac and van Moerbeke. §

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodic GMP Matrices

We recall criteria on the spectrum of Jacobi matrices such that the corresponding isospectral torus consists of periodic operators. Motivated by those known results for Jacobi matrices, we define a new class of operators called GMP matrices. They form a certain Generalization of matrices related to the strong Moment Problem. This class allows us to give a parametrization of almost periodic fini...

متن کامل

Finite Gap Jacobi Matrices, I. The Isospectral Torus

Let e⊂ R be a finite union of disjoint closed intervals. In the study of orthogonal polynomials on the real line with measures whose essential support is e, a fundamental role is played by the isospectral torus. In this paper, we use a covering map formalism to define and study this isospectral torus. Our goal is to make a coherent presentation of properties and bounds for this special class as...

متن کامل

[ m at h . SP ] 3 1 Ju l 2 01 1 FINITE GAP JACOBI MATRICES , III . BEYOND THE SZEGŐ CLASS

Let e ⊂ R be a finite union of l + 1 disjoint closed intervals and denote by ωj the harmonic measure of the j leftmost bands. The frequency module for e is the set of all integral combinations of ω1, . . . , ωl. Let {ãn, b̃n}n=1 be a point in the isospectral torus for e and p̃n its orthogonal polynomials. Let {an, bn}n=1 be a half-line Jacobi matrix with an = ãn+δan, bn = b̃n+δbn. Suppose

متن کامل

From random matrices to quasi-periodic Jacobi matrices via orthogonal polynomials

We present an informal review of results on asymptotics of orthogonal polynomials, stressing their spectral aspects and similarity in two cases considered. They are polynomials orthonormal on a finite union of disjoint intervals with respect to the Szegö weight and polynomials orthonormal on R with respect to varying weights and having the same union of intervals as the set of oscillations of a...

متن کامل

Isospectral Deformations of Random Jacobi Operators

We show the integrability of infinite dimensional Hamiltonian systems obtained by making isospectral deformations of random Jacobi operators over an abstract dynamical system. The time 1 map of these so called random Toda flows can be expressed by a QR decomposition.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Systems & Control Letters

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2013